Sequences with Low-Discrepancy Blue-Noise 2-D Projections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

In this supplementary material, Section 1 details our sampler and demonstrate its properties. We first define useful concepts: (q1, ...,qs)equidistributed sets (which are the basis for (t,k,s)-nets) and the relationship between equidistribution and discrepancy (Section 1.1). We also present the Sobol sequence (since our sampler relies on its properties), and look at the binary representation of...

متن کامل

Discrete Low-Discrepancy Sequences

Holroyd and Propp used Hall’s marriage theorem to show that, given a probability distribution π on a finite set S, there exists an infinite sequence s1, s2, . . . in S such that for all integers k ≥ 1 and all s in S, the number of i in [1, k] with si = s differs from k π(s) by at most 1. We prove a generalization of this result using a simple explicit algorithm. A special case of this algorithm...

متن کامل

Low Discrepancy Sequences and Learning

The Discrepancy Method is a constructive method for proving upper bounds that has received a lot of attention in recent years. In this paper we revisit a few important results, and show how it can be applied to problems in Machine Learning such as the Empirical Risk Minimization and Risk Estimation by exploiting connections with combinatorial dimension theory.

متن کامل

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed?

Quasi-Monte Carlo (QMC) methods have been successfully used to compute high-dimensional integrals arising in many applications, especially in finance. To understand this success and the possible potential limitations of QMC, this paper focuses on quantitative measures of the quality of a point set in high dimensions. We introduce the order-`, superposition and truncation discrepancies, which me...

متن کامل

On Atanassov's methods for discrepancy bounds of low-discrepancy sequences

The aim of this survey paper is to give an updated overview of results on low discrepancy sequences obtained via Atanassov’s methods. These methods first initiated for Halton sequences have been later on extended to generalizations of these sequences and to (t, s)sequences, the other well known family of low discrepancy sequences, including polynomial arithmetic analogues of Halton sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Graphics Forum

سال: 2018

ISSN: 0167-7055

DOI: 10.1111/cgf.13366